Structural and functional studies of mutations affecting the UBA domain of SQSTM1 (p62) which cause Paget's disease of bone.
نویسندگان
چکیده
Mutations affecting the UBA (ubiquitin-associated) domain of SQSTM1 (Sequestosome 1) (p62) are a common cause of Paget's disease of bone. The missense mutations resolve into those which retain [P392L (Pro(392)-->Leu), G411S] or abolish (M404V, G425R) the ability of the isolated UBA domain to bind Lys-48-linked polyubiquitin. These effects can be rationalized with reference to the solution structure of the UBA domain, which we have determined by NMR spectroscopy. The UBA domain forms a characteristic compact three-helix bundle, with a hydrophobic patch equivalent to that previously implicated in ubiquitin binding by other UBA domains. None of the mutations affect overall folding of the UBA domain, but both M404V and G425R involve residues in the hydrophobic patch, whereas Pro-392 and Gly-411 are more remote. A simple model assuming the isolated UBA domain is functioning as a compact monomer can explain the effects of the mutations on polyubiquitin binding. The P392L and G411S mutations do however have subtle local effects on secondary structure, which may become more relevant in full-length SQSTM1. Identification of the in vivo ubiquitylated substrates of SQSTM1 will be most informative in determining the functional significance of the SQSTM1-ubiquitin interaction, and consequences of the disease-associated mutations.
منابع مشابه
Structure of the ubiquitin-associated domain of p62 (SQSTM1) and implications for mutations that cause Paget's disease of bone.
The p62 protein (also known as SQSTM1) mediates diverse cellular functions including control of NFkappaB signaling and transcriptional activation. p62 binds non-covalently to ubiquitin and co-localizes with ubiquitylated inclusions in a number of human protein aggregation diseases. Mutations in the gene encoding p62 cause Paget's disease of bone (PDB), a common disorder of the elderly character...
متن کاملp62 mutations, ubiquitin recognition and Paget's disease of bone.
Functional analyses of PDB (Paget's disease of bone)-associated mutants of the p62 [also known as SQSTM1 (sequestosome 1)] signalling adaptor protein represent an interesting paradigm for understanding not only the disease mechanism in this skeletal disorder, but also the critical determinants of ubiquitin recognition by an ubiquitin-binding protein. The 11 separate PDB mutations identified to ...
متن کاملDisruption of ubiquitin-mediated processes in diseases of the brain and bone.
A role for ubiquitin in the pathogenesis of human diseases was first suggested some two decades ago, from studies that localized the protein to intracellular protein aggregates, which are a feature of the major human neurodegenerative disorders. Although several different mechanisms have been proposed to connect impairment of the UPS (ubiquitin-proteasome system) to the presence of these 'ubiqu...
متن کاملFunctional interaction between sequestosome-1/p62 and autophagy-linked FYVE-containing protein WDFY3 in human osteoclasts.
Paget's disease of bone (PDB) is a late-onset disorder characterised by focal areas of increased bone resorption, with osteoclasts that are increased in size, multinuclearity, number and activity. PDB-causing missense and nonsense variants in the gene encoding Sequestosome-1/p62 (SQSTM1) have been identified, all of which cluster in and around the ubiquitin-associated (UBA) domain of the protei...
متن کاملDomain-specific mutations in sequestosome 1 (SQSTM1) cause familial and sporadic Paget's disease.
Paget's disease of bone (PDB) is a common disorder characterized by focal abnormalities of increased and disorganized bone turnover. Genetic factors are important in the pathogenesis of PDB, and in previous studies, we and others identified a locus for familial PDB by genome-wide search on 5q35-qter (PDB3). The gene encoding sequestosome 1 (SQSTM1/p62) maps to within the PDB3 critical region, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemical Society transactions
دوره 32 Pt 5 شماره
صفحات -
تاریخ انتشار 2004